Report No.: S23090407502001

CE EMC Test Report

(Declaration of Conformity) For Electromagnetic compatibility Of

Trade Mark : N/A

Product : HMI touch integrated screen

H070R01W, H070R01WG, H101R01W, H101R01WG, H080R01W, H080R01WG, H156K01W, H156K01WG, H116K01W, Model Number: H116K01WG, H133K01W, H133K01WG, H215K01W, H215K01WG, H185K01WG, H270K01WG, H238K01WG, H170K01WG, H190K01WG, H320K01WG

Prepared for

H.C.C. INTERNATIONAL LIMITED

Room 1808, Building A7, Creative City, Liuxian Avenue, Nanshan District, Shenzhen, China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1&5/F, Building C, 1&2/F, Building E, Fenda Science Park, Sanwei Community, Hangcheng Street, Baoan District, Shenzhen, Guangdong, China Tel.: 400-800-6106, 0755-2320 0050 / 2320 0090 Website: http://www.ntek.org.cn

	EST RESULT CERTIFICATION
Applicant's Name:	H.C.C. INTERNATIONAL LIMITED
Address:	Room 1808, Building A7, Creative City, Liuxian Avenue, Nanshan District, Shenzhen, China
Manufacturer's Name:	H.C.C. INTERNATIONAL LIMITED
Address:	Room 1808, Building A7, Creative City, Liuxian Avenue, Nanshan District, Shenzhen, China
Factory's Name	H.C.C. INTERNATIONAL LIMITED
	Floor 3-4, Building D5, Xintang Industrial Park, East District,
Address:	Baishixia Community, Fuyong Street, Bao'an District, Shenzhen
	City, Guangdong Province, China.
Product description	
Product Name:	HMI touch integrated screen
	H070R01W, H070R01WG, H101R01W, H101R01WG, H080R01W,
	H080R01WG, H156K01W, H156K01WG, H116K01W,
Model Number	H116K01WG, H133K01W, H133K01WG, H215K01W,
	H215K01WG, H185K01WG, H270K01WG, H238K01WG,
	H170K01WG, H190K01WG, H320K01WG
	EN 55032:2015+A1:2020
Standards	EN 55035:2017+A11:2020
	EN IEC 61000-3-2:2019+A1:2021
	EN 61000-3-3:2013+A2:2021
This report shall not be repro	oduced except in full, without the written approval of NTEK, this
document may be altered or	revised by NTEK, personal only, and shall be noted in the revision of
the document.	

Test Sample Number	:
Date of Test	:
Date (s) of performance of tests	:
Date of Issue	:
Test Result	1

S230904075002

07 Sep. 2023 ~ 18 Sep. 2023 18 Sep. 2023 **Pass**

Testing Engineer

Allen. Huang

(Allen Huang)

Technical Manager

Authorized Signatory

Thang 5,64

(Sky Zhang)

W

(Alex)

	Table of Contents	Page
		4
		5
	1.1 TEST FACILITY	7
	1.2 MEASUREMENT UNCERTAINTY	7
	2 GENERAL INFORMATION	g
		q
	2.2 DESCRIPTION OF TEST MODES	10
	2.2 DESCRIPTION OF TEST SETUP	10
	2.4 DESCRIPTION TEST PERIPHERAL AND FUT PERIPHERAL	11
	2.5 MEASUREMENT INSTRUMENTS LIST	12
		1/
		14
	3.1.1 POWER LINE CONDUCTED EMISSION (Frequency Range 150kHz-30MHz)	14
	3.1.2 TELECOMMUNICATION PORT CONDUCTED EMISSION (VOLTAGE LIMITS)	3
	(Frequency Range 150kHz-30MHz)	15
	3.1.3 TEST PROCEDURE	18
	3.1.4 TEST SETUP	18
	3.1.5 EUT OPERATING CONDITIONS	18
	3.1.6 TEST RESULTS	19
	3.2 RADIATED EMISSION MEASUREMENT	22
	3.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT (Below 1000MHz)	22
	3.2.2 LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)	23
		23
ł	3.2.4 TEST SETUP	24
	3.2.6 TEST RESULTS (30-1000MHz)	25
	3.3 HARMONICS CURRENT	27
	3.3.1 LIMITS OF HARMONICS CURRENT (CLASS A & CLASS D)	27
	3.3.1.1 TEST PROCEDURE	28
	3.3.1.2 EUT OPERATING CONDITIONS	28
	3.3.1.3 TEST SETUP	28
	3.3.2 TEST RESULTS	-29
	3.4 VOLTAGE FLUCTUATION AND FLICKERS	30
	3.4.1 LIMITS OF VOLTAGE FLUCTUATION AND FLICKERS	30
		30
	3.4.1.2 EUT OPERATING CONDITIONS	30
•	342 TEST RESULTS	31
		32
	4.1 STANDARD COMPLIANCE/SEVERITY LEVEL/CRITERIA	32
4	4.2 GENERAL PERFORMANCE CRITERIA	32
1		

	Report No.: S23090407502001
Table of Contents	Page
4.3 GENERAL PERFORMANCE CRITERIA TEST SETUP	33
4 4 FSD TESTING	34
4 4 1 TEST SPECIFICATION	34
4.4.2 TEST PROCEDURE	34
4.4.3 TEST SETUP	35
4.4.4 TEST RESULTS	36
4.5 RS TESTING	37
4.5.1 TEST SPECIFICATION	37
4.5.2 TEST PROCEDURE	37
4.5.3 TEST SETUP 💉 🔶	38
4.5.4 TEST RESULTS	39
4.6 EFT/BURST TESTING	40
4.6.1 TEST SPECIFICATION	40
4.6.2 TEST PROCEDURE	40
4.6.3 TEST SETUP	۲ ۲ ۲ 41
4.6.4 TEST RESULTS	42
4.7 SURGE TESTING	43
4.7.1 TEST SPECIFICATION	43
4.7.2 TEST PROCEDURE	43
4.7.3 TEST SETUP	43
4.7.4 TEST RESULTS	44
4.8 CONTINUOUS RADIO FREQUENCY DISTURBANCES	TESTING 45
4.8.1 TEST SPECIFICATION	45
4.8.2 TEST PROCEDURE	45
4.8.3 TEST SETUP	45
4.8.4 TEST RESULTS	46
4.9 POWER FREQUENCY MAGNETIC FIELD TESTING	47
	47
	40
4.10 VOLTAGE INTERRUPTION/DIPS TESTING	49
	49
	49
	50
ATTACHMENT PHOTOGRAPHS OF EUT	- 53

Report No.: S23090407502001

1. TEST SUMMARY

Test procedures according to the technical standards:

	EMC Emission			
Standard	Test Item	Limit	Judgment	Remark
at with the	Conducted Emission On AC And Telecom Port (150kHz to 30MHz)	Class B	PASS	4
ATT ATE	Disturbance Voltage at the Antenna Terminals (30MHz To 2150MHz)		N/A	
EN 55032:2015+A1:2020	Wanted signal and disturbance voltage at the RF output terminals (30MHz To 2150MHz)		N/A	
	Radiated Emission (30MHz to 1000MHz)	Class B	PASS	L.
At star	Radiated Emission (1GHz to 6GHz)	At A	N/A	NOTE (2)
EN IEC 61000-3-2:2019+A1:2021	Harmonic Current Emission	Class A	N/A	NOTE (3)
EN 61000-3-3:2013+A2:2021	Voltage Fluctuations & Flicker		PASS	
	EMC Immunity			
Section EN 55035:2017+A11:2020	Test Item	Performance Criteria	Judgment	Remark
EN 61000-4-2	Electrostatic Discharge	В	PASS	2
EN 61000-4-3	RF electromagnetic field	Ă	PASS	×
EN 61000-4-4	Fast transients	В	PASS	
EN 61000-4-5	Surges	В	PASS	4
EN 61000-4-6	Continuous radio frequency disturbances	А	PASS	
EN 61000-4-8	Power Frequency Magnetic Field	A	PASS	
EN 61000-4-11	Volt. Interruptions Volt. Dips	B/C/C	PASS	at .

Report No.: S23090407502001

NOTE:

(1) "N/A" denotes test is not applicable in this Test Report

(2) If the highest frequency of the internal sources of the EUT is less than 108 MHz, the measurement shall only be made up to 1 GHz.
If the highest frequency of the internal sources of the EUT is between 108 MHz and 500 MHz, the measurement shall only be made up to 2 GHz.
If the highest frequency of the internal sources of the EUT is between 500 MHz and 1 GHz, measurement shall only be made up to 5 GHz.
If the highest frequency of the internal sources of the EUT is above 1 GHz, the Measurement shall only be made up to 5 GHz.

- (3) The power consumption of EUT is less than 75W and no Limits apply.
- (4) For client's request and manual description, the test will not be executed.

Report No.: S23090407502001

Shenzhen NTEK Testing Technology Co., Ltd.

Add. : 1&5/F, Building C, 1&2/F, Building E, Fenda Science Park, Sanwei Community, Hangcheng Street, Baoan District, Shenzhen, Guangdong, China

CNAS-Lab.	The Laboratory has been assessed and proved to be in compliance		
	with CNAS-CL01:2018 (identical to ISO/IEC 17025:2017)		
	The Certificate Registration Number is L5516		
ISED-Registration :	The Company Number: 9270A.		
	CAB identifier: CN0074.		
FCC- Accredited :	Test Firm Registration Number: 463705		
	Designation Number: CN1184		
A2LA-Lab. :	The Certificate Registration Number is 4298.01		
	This laboratory is accredited in accordance with the recognized		
	International Standard ISO/IEC 17025:2017 General requirements for		

the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of **k=2**, providing a level of confidence of approximately **95** %.

Test Item	Measurement Frequency Range	К	U(dB)
Conducted Emission	0.009MHz ~ 0.15MHz	2	3.6
Conducted Emission	0.15MHz ~ 30MHz	2	3.1
Telecom Conducted Emission(Cat 3)	0.15MHz ~ 30MHz	2	3.1
Telecom Conducted Emission(Cat 5)	0.15MHz ~ 30MHz	2	3.6
Telecom Conducted Emission(Cat 6)	0.15MHz ~ 30MHz	2	4.2
Radiated Emission	30MHz ~ 1000MHz	2	5.2
Radiated Emission	1000MHz ~ 18000MHz	2	5.1
Power Clamp	30MHz ~ 300MHz	2	2.2

Rev.01	Initial issue of report	Sep. 18, 202:
	A AND A	
	t the t	
- 		
8 - 2 A		er stit
25 - 35 - 4		
		1
		* *
	A 2	
4		
	5	
4	t t	
	* * *	
*		
5		~
		2 1
		5
	<u> </u>	
		*
	<u> </u>	-
· ·		4

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Equipment	HMI touch integrated screen				
Model Number	H070R01W				
Additional Model Number(s)	H070R01WG, H101R01W, H101R01WG, H080R01W, H080R01WG, H156K01W, H156K01WG, H116K01W, H116K01WG, H133K01W, H133K01WG, H215K01W, H215K01WG, H185K01WG, H270K01WG, H238K01WG, H170K01WG, H190K01WG, H320K01WG				
Model Difference	All models are identical except model's name.				
Product Description	The EUT is a HMI touch integrated screen. Operating frequency: 24 MHz (Declaration by Manufacturer) Connecting I/O port: N/A Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as a Multimedia Device. More details of EUT technical specification, please refer to the User's Manual.				
Power Source	AC Voltage				
Power Rating	Adapter Model: FX24E-120200C Adapter Rating: Input: AC 100-240V, 50/60Hz, 0.6A Max. Output: DC 12V, 2A				

2.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively. All test modes in the table below are tested, the worst case is listed on this report.

Pretest Mode	Description
Mode 1	USB Playing
Mode 2	TF Playing
Mode 3	Ping

For Conducted Test				
Final Test Mode	Description			
Mode 1	USB Playing			
Mode 2	🔔 💦 TF Playing	~	×	
Mode 3	Ping 🔶			2

For Radiated Test						
Final Test Mode	Description					
Mode 1	USB Playing					
Mode 2	TF Playing		5			

For EMS Test							
Final Test Mode		Description					
Mode 1	x 5	USB Playing	4				
Mode 2		TF Playing					
Mode 3		Ping	.L				

^{2.3} DESCRIPTION OF TEST SETUP Mode CE : TF Playing

2.4 DESCRIPTION TEST PERIPHERAL AND EUT PERIPHERAL

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Brand	Model/Type No.	Series No.	Note
E-1	HMI touch integrated screen	N/A	H070R01W	N/A	EUT
E-2	Adapter	N/A	FX24E-120200C	N/A	EUT
E-3	Notebook	D¢LL	Inspiron 5493	9M1NN63	
E-4	Earphone	N/A	N/A	N/A	
E-5	U-Disk	Kingston	N/A	N/A	
E-6	TF Card	Kingston	CO8G	N/A	
	7				
		5			ľ S
	x x			2 2	

Item	Shielded Type	Ferrite Core	Length	Note
C-1	NO	NO	100cm	
C-2	YES	YES	120cm	~
Ļ	Str. 1		7 7	1 × ×
r				
		4	×	
	× ~	4		

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in ^[] Length ^{_]} column.
- (3) "YES" means "shielded" "with core"; "NO" means "unshielded" "without core".

Report No.: S23090407502001

2.5 MEASUREMENT INSTRUMENTS LIST

2.5.1 CONDUCTED TEST

2.3.	T CONDUCTED TE:	51					
Item	Name of Equipment	Manufacture	r Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Single Phase LISN	R&S	ENV216	101490	May 29, 2023	May 28, 2024	1 year
2	Single Phase LISN	R&S	ENV216	101313	Mar. 27, 2023	Mar. 26, 2024	1 vear
3	Three-Phase LISN	SCHWARZBEC	K NNLK 8129	8129245	Mar. 27, 2023	Mar. 26. 2024	1 vear
4	Low Frequency Cable	N/A	R-03	N/A	Jun. 17. 2022	Jun. 16. 2025	3 years
5	50Ω Coaxial Switch	Anritsu	MP59B	6200983704	May 06, 2023	May 05, 2026	3 vears
6	EMI Test Receiver	R&S	ESCI	101160	Mar. 27. 2023	Mar. 26, 2024	1 vear
2.5.	2 RADIATED TEST			A.			
ltem	Name of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	3m Anechoic Chamber	N/A	9*6*6	N/A	May 14, 2021	May 13, 2024	3 years
2	3m Anechoic Chamber	N/A	9*6*6	N/A	Jul. 28, 2022	Jul. 27, 2025	3 years
3	EMI Test Receiver	R&S	ESPI7	101318	Mar. 27, 2023	Mar. 26, 2024	1 year
4	Bilog Antenna	TESEQ	CBL6111D	31216	Mar. 16, 2023	Mar. 15, 2024	1 year
5	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	May 06, 2023	May 05, 2026	3 years
6	Cable	Talent Microwave	A81-NWMS MAM-12M	21120897	Dec. 16, 2021	Dec. 15, 2024	3 years
7	Cable	Talent Microwave	A81-NMN M-10M	22084896	Sep. 09, 2022	Sep. 08, 2025	3 years
8	Cable	Talent Microwave	A81-NMN M-2M	22084895	Sep. 09, 2022	Sep. 08, 2025	3 years
9	Log-Periodic Antenna	SCHWARZB ECK	VULB 9162	584 🞺	Jan. 11, 2023	Jan. 10, 2024	1 year
10	Log-Periodic Antenna	SCHWARZB ECK	VULB 9162	586	Jan. 11, 2023	Jan. 10, 2024	1 year
11	Attenuator	Eastsheep	5W-N-JK-6 G-6DB	N/A	Aug. 08, 2023	Aug. 07, 2024	1 year
12	Attenuator	Eastsheep	5W-N-JK-6 G-6DB	N/A	Jul. 31, 2023	Jul. 30, 2024	1 year
13	Broadband Horn Antenna	EM	EM-AH-10 180	2011071402	Mar. 31, 2022	Mar. 30, 2025	3 years
14	Broadband Hom Antenna	SCHWARZB ECK	BBHA 9120 D	2816	Jan. 12, 2023	Jan. 11, 2024	1 year
15	Broadband Hom Antenna	SCHWARZB ECK	BBHA 9120 D	2817	Jan. 12, 2023	Jan. 11, 2024	1 year
16	Spectrum Analyzer	Keysight	N9020A	MY53280244	Nov. 04, 2022	Nov. 03, 2023	1 year
17	Spectrum Analyzer	Agilent	E4440A	MY41000130	Mar. 27, 2023	Mar. 26, 2024	1 year
18	Pre-Amplifier	EMC	EMC05183 5SE	980246	May 29, 2023	May 28, 2024	1 year
19	Cable	Keysight	A40-2.92M 2.92M-2M	1808041	Nov. 01, 2022	Oct. 31, 2023	3 years
2.5.	3 HARMONICS AND	FLICKERS			4		at .
Item	Name of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Power Analyzer	EVERFINE	HFA-1000	P626750CD 1411117	Sep. 19, 2022	Sep. 18, 2023	1 year
2	AC Power Source	EVERFINE	HFS-4000_ V200	P624486CD 1411123	Sep. 19, 2022	Sep. 18, 2023	1 year

25							
2.5.	4 LOD			a			Calibration
Item	Name of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	period
1	ESD Generator	EVERFINE	EMS61000 -2A	P615727TA 1421113	Jul. 06, 2023	Jul. 05, 2024	1 year
2	Electrostatic Discharge Generator	Lioncel	ESD-203B	ESD203B01 50402	Aug. 11, 2023	Aug. 10, 2024	1 year
2.5.	5 RS	.L.	X	S			
Item	Name of Equipment	Manufacture	r Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	RF Test System Controlle	r AR	SC1000	0350156	Feb. 22, 2021	Feb. 21, 2024	3 years
2	3m Anechoic Chamber	N/A	9*6*6	N/A	Mar. 24, 2023	Mar. 23, 2026	3 years
3	3m Anechoic Chamber	N/A	7*5*4	N/A	May 19, 2023	May 18, 2026	3 years
4	Broadband Amplifier	AR	60S1G6	0350414	Mar. 21, 2023	Mar. 20, 2024	1 vear
5	Bilog Antenna	ETS	3142E	00214344	Nov. 04, 2022	Nov. 03. 2023	1 vear
6	Power Amplifier	rflight	NTWPA-0 0810200	17063153	May 29, 2023	May 28, 2024	1 year
7	ESG Vetctor Signal Generator	Agilent	E4438C	MY45093347	Mar. 21, 2023	Mar. 20, 2024	1 year
2.5.	6 EFT/BURST, SUF	RGE, VOLTAG	E INTERR	UPTION/DI	PS		
Item	Name of Equipment	Manufacture	r Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Electrical Intelligent Transient Generator	EVERFINE	EMS6100 0-4A	P612005CM 5421115	Jul. 04, 2023	Jul. 03, 2024	1 year
2	Capacitive Coupling Clamp	EVERFINE	EFTC-2-V1	910006	Mar. 27, 2023	Mar. 26, 2024	1 year
3	Surge Generator	EVERFINE	EMS6100 0-5A	P612004TJ6 421112	Jul. 04, 2023	Jul. 03, 2024	1 year
4	CCITT Surge Generator	EVERFINE	EMS6100 0-5D	P615656TD 1401113	Jul. 04, 2023	Jul. 03, 2024	1 year
5	Telecommunication Lines Cdn	EVERFINE	SGN-8	P619137TS 1411113	Jul. 04, 2023	Jul. 03, 2024	1 year
6	Signal Lines CDN	EVERFINE	SGN-5	P619136TJ6 421113	Aug. 08, 2023	Aug. 07, 2024	1 year
7	Voltage Dips And Interruptions Generator	EVERFINE	EMS6100 0-11K	P612006CJ 1421117	Jul. 04, 2023	Jul. 03, 2024	1 year
2.5.	7 CONTINUOUS R	ADIO FREQU	JENCY DIS	TURBANCE	S		
ltem	Name of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Signal Generator	R&S	SML03	100954	Nov. 01, 2022	Oct. 31, 2023	1 year
2	Coupling and Decoupling Network	TESEQ	CDN M016	38722	May 29, 2023	May 28, 2024	1 year
3	Power Amplifier	TESEQ	CBA 230M-080	T44376	Aug. 08, 2023	Aug. 07, 2024	1 year
4	Attenuator	Jingtenghong	JTH-SJ-10 0W-6dB	1001451430 00686	Apr. 01, 2022	Mar. 31, 2025	3 years
5	EM Clamp	TESEQ	KEMZ 801A	47860	Nov. 01, 2022	Oct. 31, 2023	1 year
2.5.	2.5.8 PFMF						
ltem	Name of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Magnetic Field Generator	EVERFINE	EMS61000-8	3K 1007001	Feb. 19, 2023	Feb. 18, 2024	1 year
2	Magnetic Field Coil	EVERFINE	N/A	N/A	Feb. 19, 2023	Feb. 18, 2024	1 year

Report No.: S23090407502001

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION (Frequency Range 150kHz-30MHz)

 Table A.8 – Requirements for conducted emissions from the AC mains power ports

 of Class A equipment

Applicable to

1. AC mains power ports (3.1.1)

Table clause	Frequency range MHz	Coupling device (see Table A.7)	Detector type / bandwidth	Class A limits dΒ(μV)
A8.1	0,15 – 0,5	6 M N I	Quesi Beek / 0 kHz	79
	0,5 - 30	Aivin		73
A8.2	0,15 - 0,5	ΔΜΝΙ		66
	0,5 - 30	AIVIN	Average / 9 KHZ	60

Apply A8.1 and A8.2 across the entire frequency range.

Table A.9 – Requirements for conducted emissions from the AC mains power ports of Class B equipment

Applicable to

1. AC mains power ports (3.1.1)

Frequency range MHz	Coupling device (see Table A.7)	Detector type / bandwidth	Class B limits dB(µV)
0,15 - 0,5			66 – 56
0,5 – 5	AMN	Quasi Peak / 9 kHz	56
5 – 30			60
0,15 – 0,5			56 – 46
0,5 – 5	AMN	Average / 9 kHz	46
5 – 30			50
	Frequency range MHz 0,15 - 0,5 0,5 - 5 5 - 30 0,15 - 0,5 0,5 - 5 5 - 30 0,5 - 5 5 - 30	Frequency range MHz Coupling device (see Table A.7) 0,15 - 0,5 AMN 5 - 30 0,15 - 0,5 0,5 - 5 AMN 5 - 30 AMN 5 - 30 AMN	Frequency range MHz Coupling device (see Table A.7) Detector type / bandwidth 0,15 - 0,5 AMN Quasi Peak / 9 kHz 5 - 30 0,15 - 0,5 AMN 0,5 - 5 AMN Average / 9 kHz 5 - 30 AMN Average / 9 kHz

Apply A9.1 and A9.2 across the entire frequency range.

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

3.1.2 TELECOMMUNICATION PORT CONDUCTED EMISSION (VOLTAGE LIMITS) (Frequency Range 150kHz-30MHz)

Table A.10 - Requirements for asymmetric mode conducted emissions from Class A equipment

Applicable to

wired network ports (3.1.30)
 optical fibre ports (3.1.24) with metallic shield or tension members

5. anteni			_		
Table clause	Frequency range MHz	Coupling device (see Table A.7)	Detector type / bandwidth	Class A voltage limits dB(µV)	Class A current limits dB(μA)
A10.1	0,15 – 0,5	ΔΔΝ	Quasi Bask / 9 kHz	97 – 87	
	0,5 – 30			87	2/2
	0,15 – 0,5	A A N		84 – 74	n/a
	0,5 – 30	AAN	Average / 5 KHZ	74	
A10.2	0,15 – 0,5	CVP	Oursei Darsk (0 kille	97 – 87	53 – 43
	0,5 – 30	and current probe	Quasi Peak / 9 KHZ	87	43
	0,15 – 0,5	CVP		84 – 74	40 – 30
	0,5 – 30	and current probe	Average / 9 kHz	74	30
A10.3	0,15 – 0,5	Current Prohe	Quasi Bask / 9 kHz		53 – 43
	0,5 – 30				43
	0,15 - 0,5	Current Broke		n/a	40 – 30
	0,5 – 30		Average / 9 KHZ		30

The choice of coupling device and measurement procedure is defined in Annex C.

AC mains ports that also have the function of a wired network port shall meet the limits given in Table A.8.

The test shall cover the entire frequency range.

The application of the voltage and/or current limits is dependent on the measurement procedure used. Refer to Table C.1 for applicability.

Testing is required at only one EUT supply voltage and frequency.

Applicable to ports listed above and intended to connect to cables longer than 3 m.

Report No.: S23090407502001

Table A.11 – Requirements for asymmetric mode conducted emissions from Class B equipment

Applicable to

- wired network ports (3.1.30)
 optical fibre ports (3.1.24) with metallic shield or tension members
- broadcast receiver tuner ports (3.1.8)
 antenna ports (3.1.3)

Table clause	Frequency range MHz	Coupling device (see Table A.7)	Detector type / bandwidth	Class B voltage limits dB(µV)	Class B current limits dB(µA)
A11.1	0,15 – 0,5	A A NI	Oussi Dask / 0 kHz	84 – 74	
	0,5 – 30	AAN	Quasi Peak / 9 KHZ	74	
	0,15 – 0,5	A A N		74 – 64	n/a
	0,5 – 30	AAN	Average / 9 KHZ	64	
A11.2	0,15 – 0,5	CVP	Oversi Dask / O kills	84 - 74	40 – 30
	0,5 – 30	and current probe	Quasi Peak / 9 kHz	74	30
	0,15 – 0,5	CVP		74 – 64	30 – 20
	0,5 – 30	and current probe	Average / 9 KHZ	64	20
A11.3	0,15 – 0,5	Current Droke	Overi Deek / 0 kHz		40 – 30
	0,5 – 30	Current Prope	Quasi Peak / 9 KHZ	- (-	30
	0,15 – 0,5	Current Broke		n/a	30 – 20
	0,5 - 30	Current Prope	Average / 9 KHZ		20

The choice of coupling device and measurement procedure is defined in Annex C.

Screened ports including TV broadcast receiver tuner ports are tested with a common-mode impedance of 150 Ω . This is typically accomplished with the screen terminated by 150 Ω to earth.

AC mains ports that also have the function of a wired network port shall meet the limits given in Table A.9.

The test shall cover the entire frequency range.

The application of the voltage and/or current limits is dependent on the measurement procedure used. Refer to Table C.1 for applicability.

Testing is required at only one EUT supply voltage and frequency.

Applicable to ports listed above and intended to connect to cables longer than 3 m.

Report No.: S23090407502001

Table A.12 – Requirements for conducted differential voltage emissions from Class B equipment

Applicable to

1. TV broadcast receiver tuner ports (3.1.8) with an accessible connector 2. RF modulator output ports (3.1.27)

3. FM broadcast receiver tuner ports (3.1.8) with an accessible connector

Table clause	Frequency range	Detector type/ bandwidth		Class B lim dB(μV) 75	Applicability	
	WHZ		Other	Local Oscillator Fundamental	Local Oscillator Harmonics	
A12.1	30 – 950		46	46	46	See a)
	950 – 2 150	For frequencies ≤1 GHz	46	54	54	
A12.2	950 – 2 150	Quasi Boak/	46	54	54	See b)
A12.3	30 – 300	120 kHz	46	54	50	See c)
	300 – 1 000				52	
A12.4	30 – 300	For frequencies	46	66	59	See d)
	300 – 1 000	≥1 GHz			52	
A12.5	30 – 950	Peak/ 1 MHz	46	76	46	See e)
	950 – 2 150			n/a	54	

a) Television receivers (analogue or digital), video recorders and PC TV broadcast receiver tuner cards working in channels between 30 MHz and 1 GHz, and digital audio receivers.

b) Tuner units (not the LNB) for satellite signal reception.

c) Frequency modulation audio receivers and PC tuner cards.

d) Frequency modulation car radios.

e) Applicable to EUTs with RF modulator output ports (for example DVD equipment, video recorders, camcorders and decoders etc.) designed to connect to TV broadcast receiver tuner ports.

Testing is required at only one EUT supply voltage and frequency.

The term 'other' refers to all emissions other than the fundamental and the harmonics of the local oscillator.

The test shall be performed with the device operating at each reception channel.

The test shall cover the entire frequency range.

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

Report No.: S23090407502001

NTEK 北测

3.1.3 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

3.1.4 TEST SETUP

Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

3.1.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of **2.3** Unless otherwise a special operating condition is specified in the follows during the testing.

Report No.: S23090407502001

3.1.6 TEST RESULTS

EUT:		HMI toucl	h integra	ted scre	en 🗸 I	Model	Name:		H070R01\	N 🧳		
Tempe	rature:	25.7 ℃			5	Relativ	e Hum	idity:	57%			
Pressu	ire:	1010hPa				Test Da	ate:		2023-09-0	2023-09-09		
Test M	ode:	TF Playin	q 🔶			Phase:			L			
Test Vo	oltage:	AC 230V	/50Hz			X		7		×		
100.0 d 90 80 70	BuV											
60												
50 🕠	T	3										
40	2 hwww.			5	7	n n	0000	9	U			
30	AAN M	W Low	AL HAMING AL	AWATAY	┉∖ᡟᢩᡘᢜᡞᡟᡗ	YNA		ነገነ እንዲ	Muriamania	we have a least		
20	Γ'Ψ"		wr r nw	f v	V V	YYY	1111	n vy	Munimana	peak		
10	•	γ·Ψ	Ŵ							AVG		
0												
-10												
-20												
0.150		0.500)		(MHz)		5.0	00		30.000		
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark			
1	0.1860	39.51	10.01	49.52	64.21	-14.69	QP	Р				
2	0.1860	26.54	10.01	36.55	54.21	-17.66	AVG	Ρ				
3	0.3820	36.94	10.40	47.34	58.24	-10.90	QP	Ρ				
4 *	0.3820	32.25	10.40	42.65	48.24	-5.59	AVG	Ρ				
5	1.1380	27.16	11.94	39.10	56.00	-16.90	QP	P				
6	1.1380	21.47	11.94	33.41	46.00	-12.59	AVG	P				
7	1.9340	26.41	13.52	39.93	56.00	-16.07	QP	P				
8	1.9340	19.79	13.52	33.31	46.00	-12.69	AVG	P				
9	6 2010	19.02	9.00	30.8U	50.00	-23.20						
10	12 2520	24.14	9.00	20.01	60.00	-21.49	AVG OP					

Remark:

12

13.3580

Factor = Insertion Loss + Cable Loss.

17.85

9.70

27.55

50.00

-22.45 AVG

Р

Report No.: S23090407502001

7							X					
EUT:		HMI touch	n integra	ted scre	en 🖉 I	Model	Name:		H070R01W			
Tempe	erature:	25.7 ℃			S F	Relativ	e Humi	idity:	57% 📩 🖍			
Press	ure:	1010hPa			-	Test Da	ate:		2023-09-09			
Test M	/lode:	TF Playin	q 🌔		F	Phase:			N			
Test V	/oltage:	AC 230V/	50Hz									
5			لہ	_								
100.0 (ara											
90 –												
on												
00												
70												
60												
50 🔼												
	MAR	X	5	7								
40 2		Why m		<u>ð</u> 7	n min	\ m Å	nria.	naan				
30 127	\vee \forall η ω ψ	$\ \mathcal{M}_{\mathcal{M}} \ = \ \mathcal{M}_{\mathcal{M}} \ $	WM WWW V	MP X / M	WM	$\sqrt{\sqrt{X^2}}$	V V12 V ∧∧∧	AGAD	man			
20	rų .	°YWK'.	W	$+$ \forall	ΨΨ	VVV	1 1 1 4	WV V	"More manual	- MANNA		
10				W	A .					Manurk (pea		
										~ AVG		
0												
-10 —												
-20												
0.150		0.500	1		(MHz)		5.0	00		30.000		
No.	Frequency (MHz)	(dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark			
1	0.1516	43.77	9.93	53.70	65.91	-12.21	QP	Р				
2	0.1516	27.16	9.93	37.09	55.91	-18.82	AVG	Р				
3	0.3860	34.93	10.42	45.35	58.15	-12.80	QP	Р				
4 *	0.3860	30.86	10.42	41.28	48.15	-6.87	AVG	Ρ				
5	0.6820	29.04	11.01	40.05	56.00	-15.95	QP	P				
6	0.6820	22.54	11.01	33.55	46.00	-12.45	AVG	P				
7	1.0300	27.63	11.72	39.35	56.00	-16.65	QP	P				
8	1.0300	22.23	11.72	33.95	46.00	-12.05	AVG	P				
9	3.2820	27.95	9.67	37.62	56.00	-18.38	QP	Р				
10	3.2820	21.18	9.67	30.85	46.00	-10.15	AVG	P				
12	4.0420	10.07	9.67	20.04	46.00	16.84						
12	4.0420	13.45	5.07	25.10	40.00	1-10.04	AVG	F				

Remark:

Factor = Insertion Loss + Cable Loss.

Report No.: S23090407502001

EUT:	UT: HMI touch integrated screen			en 🟑	Model	Name:		H070R01	H070R01W			
Tempe	erature:	25.7 ℃			5	Relativ	e Hum	idity:	57%			
Press	ure:	1010hPa				Test Da	ate:		2023-09-09			
Test M	lode:	Ping	~			Test Po	ort:		LAN Port	LAN Port		
Test V	oltage:	AC 230V	/50Hz			X		7				
						_				4		
00.0												
0												
30 -												
,												
		- <u>+</u>						9 ¥				
,0 ~~	m		3	5		7	di 1.	10	11			
50 LA	ALA MA	Nºh /u	with the second	from the	4. A.		\mathcal{M}	mm	manun and	have a second se		
40	v I v What		n wy	r yy	-¥ ₩	VVV	4444	ANN	NWW - WWWWWWW	hand the second second		
20		TNV	V I	۲	V V							
20										1 ^m		
10 -												
נ												
10												
20												
0.150		0.500	D		(MHz)		5.0)00		30.000		
			~ ~						*			
	Froquonay	Deading	Factor	Lovel	Limit	Margin		-				
No.	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	Detector	P/F	Remark			
1	0.3780	53.21	10.22	63.43	76.32	-12.89	QP	Р				
2 *	0.3780	48.48	10.22	58.70	66.32	-7.62	AVG	Р				
3	0.6780	45.65	10.97	56.62	74.00	-17.38	QP	Р				
4	0.6780	40.99	10.97	51.96	64.00	-12.04	AVG	Р				
5	1.4819	43.70	12.57	56.27	74.00	-17.73	QP	P				
6	1.4819	37.87	12.57	50.44	64.00	-13.56	AVG	P				
2 2	3.2040	40.03	9.07	18.92	64.00	-16.30						
9	6 4420	55.14	9.74	64.88	74.00	-9.12	OP	P				
10	6.4420	43.78	9.74	53.52	64.00	-10.48	AVG	Р				
11	11.8940	44.79	9.90	54.69	74.00	-19.31	QP	P				
40	11 8940	38.43	9 90	18 33	64.00	-15.67	AVG	D				

Remark:

Factor = Insertion Loss + Cable Loss.

Report No.: S23090407502001

3.2 RADIATED EMISSION MEASUREMENT

3.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT (Below 1000MHz)

Table A.2 – Requirements for radiated emissions at frequencies up to 1 GHzfor Class A equipment

Table	Frequency range	М	easurement	Class A limits dB(µV/m)				
	MHz	Distance m	Detector type/ bandwidth	OATS/SAC (see Table A.1)				
A2.1	30 – 230	10		40				
	230 – 1 000	10	Quasi Peak /	47				
A2.2	30 – 230	0	120 kHz	50				
	230 – 1 000	3		57				

Apply only A2.1 or A2.2 across the entire frequency range.

Table A.4 – Requirements for radiated emissions at frequencies up to 1 GHz for Class B equipment

Table	Frequency range	Me	asurement	Class B limits dB(µV/m)		
clause	MHz	Distance m	Detector type/ bandwidth	OATS/SAC (see Table A.1)		
A4.1	30 – 230	10		30		
	230 – 1 000	10	Quasi Peak /	37		
A4.2	30 – 230	<u>,</u>	120 kHz	40		
	230 - 1 000	3		47		

Apply only table clause A4.1 or A4.2 across the entire frequency range.

Table A.6 – Requirements for radiated emissions from FM receivers

Table	Frequency range	Me	easurement	Class B lim	it dB(μV/m)
clause	MHZ	Distance	Detector type/	Fundamental	Harmonics
		m	panawiath	OATS/SAC (see Table A.1)	OATS/SAC (see Table A.1)
A6.1	30 – 230				42
	230 – 300	10		50	42
	300 – 1 000		Quasi peak/		46
A6.2	30 – 230		120 kHz		52
	230 – 300	3		60	52
	300 – 1 000				56

Apply only A.6.1 or A.6.2 across the entire frequency range.

These relaxed limits apply only to emissions at the fundamental and harmonic frequencies of the local oscillator. Signals at all other frequencies shall be compliant with the limits given in Table A.4.

3.2.2 LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

Table A.3 – Requirements for radiated emissions at frequenciesabove 1 GHz for class A equipment

Replace the existing table by the following new table:

Table	Frequency		Class A limits			
clause	range MHz	Facility (see table A.1)	Distance m	Detector type / bandwidth	dΒ(μV/m)	
A3.1	1 000 to 6 000	FROATS	2	Average / 1 MHz	60	
A3.2	1 000 to 6 000	FSOATS 3		Peak / 1 MHz	80	

Apply A3.1 and A3.2 across the frequency range from 1 000 MHz to the highest required frequency of measurement derived from Table 1.

Table A.5 – Requirements for radiated emissions at frequenciesabove 1 GHz for class B equipment

Replace the existing table by the following new table:

Table	Frequency		Class B limits		
clause	range MHz	Facility (see table A.1)	Distance m	Detector type/ bandwidth	dB(µV/m)
A5.1	1 000 to 6 000	FROATS	2	Average/ 1 MHz	54
A5.2	1 000 to 6 000	FSUATS	3	Peak/ 1 MHz	74

Apply A5.1 and A5.2 across the frequency range from 1 000 MHz to the highest required frequency of measurement derived from Table 1 .

These requirements are not applicable to the local oscillator and harmonics frequencies of equipment covered by Table A.7.

Note:

- (1) The limit for radiated test was performed according to as following: CISPR 32.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dB μ V/m)=20log Emission level (μ V/m).

3.2.3 TEST PROCEDURE

- a. The measuring distance of at 3m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured, above 1G Average detector mode will be instead.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP(AV) Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item -EUT Test Photos.

Report No.: S23090407502001

3.2.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of **2.3** Unless otherwise a special operating condition is specified in the follows during the testing.

Report No.: S23090407502001

3.2.6 TEST RESULTS (30-1000MHz)

EUT:	HMI touch integrated sc	reen 🖉 Model Name:	H070R01W
Temperature:	25.3 ℃	Relative Humidity:	53%
Pressure:	1010hPa	Test Date:	2023-09-16
Test Mode:	TF Playing	Polarization:	Horizontal
Test Power:	AC 230V/50Hz		×
80.0 dBuV/m			.L
70			
60			
50			
40		3 /	
30 Myruminon		Janna Martin	Loght affection and a provide the second
20	and and a second a second a second a second a		
10			
0.0			
30.000	60.00	(MHz) 300.00	1000.000

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	131.7577	12.49	18.84	31.33	40.00	-8.67	QP			Р	
2	170.1948	14.31	17.48	31.79	40.00	-8.21	QP			Р	
3	287.9904	16.07	20.07	36.14	47.00	-10.86	QP			Р	
4	378.5843	17.90	22.76	40.66	47.00	-6.34	QP			Р	
5	721.7259	9.56	28.28	37.84	47.00	-9.16	QP			Р	
6 *	962.1623	9.36	31.41	40.77	47.00	-6.23	QP			Р	

Remark:

Factor = Antenna Factor + Cable Loss.

Report No.: S23090407502001

EUT:	HMI touch integrated scre	en 🖉 Model Name:	H070R01W
Temperature:	25.3 ℃	Relative Humidity:	53%
Pressure:	1010hPa	Test Date:	2023-09-16
Fest Mode:	TF Playing	Polarization:	Vertical
fest Power:	AC 230V/50Hz		li li
0.0 dBuV/m			
0			
0			
0			
0			<u>م</u> ليبدين ا
0 margaretherest		Wenter and a summer and	Mary mary when the market was
0	hendraderally manufactures and the	inter WARKUMANAL	
0			
0.0			
30.000	60.00	(MHz) 300.00	1000.0

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	70.0903	13.83	13.47	27.30	40.00	-12.70	QP			Р	
2	108.2667	13.67	18.23	31.90	40.00	-8.10	QP			Р	
3	119.8556	13.64	18.74	32.38	40.00	-7.62	QP			Р	
4 *	131.7577	13.93	18.84	32.77	40.00	-7.23	QP			Р	
5	378.5843	10.32	22.76	33.08	47.00	-13.92	QP			Р	
6	487.3151	12.28	24.72	37.00	47.00	-10.00	QP			Р	

Remark:

Factor = Antenna Factor + Cable Loss.

Report No.: S23090407502001

3.3 HARMONICS CURRENT

3.3.1 LIMITS OF HARMONICS CURRENT (CLASS A & CLASS D)

Table 1 - Limits for	or Class A equipment				
Harmonic order (n)	Maximum permissible harmonic current (A)				
Odd h	armonics				
3	2.3				
5 5	1.14				
7	0.77				
9	0.4				
11	0.33				
13	0.21				
15≤n≤39	0.15*(15/n)				
C Even ł	harmonics				
2	1.08				
4	0.43				
6	0.30				
8≤n≤40	0.23*(8/n)				
Table 2 - Limits fo	or Class D equipment				

Harmonic order (n)	Maximum permissible harmonic current per watt (mA/W)	Maximum permissible harmonic current (A)			
3	3.4	2.30			
5	1.9	1.14			
7	1.0	0.77			
9	0.5	0.40			
11 5	0.35	0.33			
13≤n≤39 (odd harmonics only)	3.85/n	See table 1			

Note: Reference standard of the two tables above: EN IEC 61000-3-2.

Report No.: S23090407502001

NTEK 北测

3.3.1.1 TEST PROCEDURE

- a. The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the maximum harmonic components under normal operating conditions.
- The classification of EUT is according to section 5 of EN IEC 61000-3-2. The EUT is classified as follows:
 - Class A: Balanced three-phase equipment, Household appliances excluding equipment as Class D, Tools excluding portable tools, Dimmers for incandescent lamps, audio equipment, equipment not specified in one of the three other classes.
 - Class B: Portable tools. Portable tools.; Arc welding equipment which is not professional equipment.
 - Class C: Lighting equipment.
 - Class D: Equipment having a specified power less than or equal to 600W of the following types: Personal computers and personal computer monitors and television receivers.
- c. The correspondent test program of test instrument to measure the current harmonics emanated from EUT is chosen. The measure time shall be not less than the time necessary for the EUT to be exercised.

3.3.1.2 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

3.3.1.3 TEST SETUP

Report No.: S23090407502001

3.3.2 TEST RESULTS

EUT:	HMI touch integrated screen	Model Name:	H070R01W
Temperature:	25.5℃	Relative Humidity:	56% 👉 💉
Pressure:	1010hPa	Test Date:	2023-09-11
Classification:	Class A	Test duration:	150s
Test Mode:	N/A		
Test Power:	N/A	~	A S

Note: The active input power of the EUT is less than 75 W. No limits apply for equipment with an active input power up to and including 75W.

3.4 VOLTAGE FLUCTUATION AND FLICKERS

3.4.1 LIMITS OF VOLTAGE FLUCTUATION AND FLICKERS

Test items	Limits(EN 61000-3-3)	Descriptions
P _{st}	\leq 1.0, T _p =10min	short-term flicker indicator
– P _{lt}	≪0.65, T _p =2h	long-term flicker indicator
d _c	≤3.3%	relative steady-state voltage change
d _{max}	≪4%(or 6% _{Note(1)} , 7% _{Note(2)})	maximum relative voltage change
d _(t)	\leq 3.3%, more than 500ms	relative voltage change characteristic

Note:

1. 6 % for equipment which is:

a. switched manually, or

b. switched automatically more frequently than twice per day, and also has either a delayed restart (the delay being not less than a few tens of seconds), or manual restart, after a power supply interruption.

2. 7 % for equipment which is

a. attended whilst in use (for example: hair dryers, vacuum cleaners, kitchen equipment such as mixers, garden equipment such as lawn mowers, portable tools such as electric drills), or

b. switched on automatically, or is intended to be switched on manually, no more than twice per day, and also has either a delayed restart (the delay being not less than a few tens of seconds) or manual restart, after a power supply interruption.

3.4.1.1 TEST PROCEDURE

a. Fluctuation and Flickers Test:

Tests was performed according to the Test Conditions/Assessment of Voltage Fluctuations specified in Clause 6.0/4.0 of IEC/EN 61000-3-3 depend on which standard adopted for compliance measurement.

b. All types of voltage fluctuation in this report are assessed by direct measurement using flicker-meter.

3.4.1.2 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

3.4.1.3 TEST SETUP

Report No.: S23090407502001

4. EMC IMMUNITY TEST

4.1 STANDARD COMPLIANCE/SEVERITY LEVEL/CRITERIA

Tests Standard No.	TEST SPECIFICATION	Test Mode Test Ports	Perform Criteria
1. ESD	8kV air discharge 4kV contact discharge	Direct Mode	В
IEC/EN 61000-4-2	4kV HCP discharge 4kV VCP discharge	Indirect Mode	В
2. RS IEC/EN 61000-4-3	80 MHz to 1000 MHz; 1800 MHz; 2600 MHz; 3500 MHz; 5000 MHz; 1 kHz, 80%, AM modulated	Enclosure	A
		Power Supply Port	В
3. EFT/Burst IEC/EN 61000-4-4	5/50ns Tr/Th 5kHz Repetition Freq.	CTL/Signal Port Data Line Port	в
	A ST	L-N	В 🎺
4. Surges IEC/EN 61000-4-5	1.2/50(8/20) Tr/Th us	L-PE	В
		CTL/Signal Port	В
5. Continuous radio	0.15 MHz to 80 MHz;	AC Power Port	А
frequency disturbances	1 kHz, 80%, AM Modulated,	DC Power Port	А
IEC/EN 61000-4-6	150Ω source impedance	CTL/Signal Port	A
6. Power Frequency Magnetic Field IEC/EN 61000-4-8	50 Hz	Enclosure	A
7. Volt. Interruptions	Voltage dips 100%		В
Volt. Dips	Voltage dips 30%	AC Power Port	С
IEC/EN 61000-4-11	Voltage Interruption 100%		С

4.2 GENERAL PERFORMANCE CRITERIA

According to EN 55035 standard, the general performance criteria as following:

	The equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer when the equipment is used
Criterion A	as intended.
	The performance level may be replaced by a permissible loss of performance. If
	the minimum performance level or the permissible performance loss is not
	specified by the manufacturer, then either of these may be derived from the
	product description and documentation, and by what the user may reasonably
	expect from the equipment if used as intended.
	After the test, the equipment shall continue to operate as intended without
	operator intervention. No degradation of performance or loss of function is
	allowed, after the application of the phenomena below a performance level
Criterion B	specified by the manufacturer, when the equipment is used as intended.
	The performance level may be replaced by a permissible loss of performance.
	During the test, degradation of performance is allowed. However, no change of
	operating state or stored data is allowed to persist after the test.
	Loss of function is allowed, provided the function is self-recoverable, or can be
	restored by the operation of the controls by the user in accordance with the
Criterion C	manufacturer's instructions.
	Functions, and/or information stored in non-volatile memory, or protected by a
	battery backup, shall not be lost.

4.3 GENERAL PERFORMANCE CRITERIA TEST SETUP

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

4.4 ESD TESTING

4.4.1 TEST SPECIFICATION

Basic Standard:	IEC/EN 61000-4-2				
Discharge Impedance:	330ohm / 150pF				
Required Performance:	B				
	Air Discharge: 2kV/4kV/8kV (Direct)				
Discharge voltage.	Contact Discharge: 2kV/4kV (Direct/Indirect)				
Polarity:	Positive & Negative				
Number of Discharges	Air Discharge: min. 20 times at each test point				
Number of Discharge:	Contact Discharge: min. 20 times at each test point				
Discharge Mode:	Single Discharge				
Discharge Period:	1 second minimum				

4.4.2 TEST PROCEDURE

The test generator necessary to perform direct and indirect application of discharges to the EUT in the following manner:

- a. Indirect application of the discharge:
 - Vertical Coupling Plane (VCP):
 - At least 10 single discharges (in the most sensitive polarity) shall be applied to the centre of one vertical edge of the coupling plane. The coupling plane, of dimensions $0,5 \text{ m} \times 0,5 \text{ m}$, is placed parallel to, and positioned at a distance of 0,1 m from, the EUT.

Discharges shall be applied to the coupling plane, with sufficient different positions such that the four faces of the EUT are completely illuminated. One VCP position is considered to illuminate 0,5 m \times 0,5 m area of the EUT surface.

Horizontal Coupling Plane (HCP):

Discharge to the HCP shall be made horizontally to the edge of the HCP.

At least 10 single discharges (in the most sensitive polarity) shall be applied at the front edge of each HCP opposite the centre point of each unit (if applicable) of the EUT and 0.1m from the front of the EUT. The long axis of the discharge electrode shall be in the plane of the HCP and perpendicular to its front edge during the discharge.

The discharge electrode shall be in contact with the edge of the HCP before the discharge switch is operated

b. Direct application of discharges to the EUT

The test shall be performed with single discharges. On each pre-selected point at least 10 single discharges (in the most sensitive polarity) shall be applied.

For the time interval between successive single discharges an initial value of 1 s is recommended. Longer intervals may be necessary to determine whether a system failure has occurred.

Report No.: S23090407502001

4.4.3 TEST SETUP

Note:

TABLE-TOP EQUIPMENT

The configuration consisted of a wooden table 0.8 meters high standing on the Ground Reference Plane. The GRP consisted of a sheet of aluminum at least 0.25mm thick, and 2.5 meters square connected to the protective grounding system. A Horizontal Coupling Plane (1.6m x 0.8m) was placed on the table and attached to the GRP by means of a cable with 940k total impedance. The equipment under test, was installed in a representative system as described in section 7 of IEC/EN 61000-4-2, and its cables were placed on the HCP and isolated by an insulating support of 0.5mm thickness. A distance of1-meter minimum was provided between the EUT and the walls of the laboratory and any other metallic structure.

FLOOR-STANDING EQUIPMENT

The equipment under test was installed in a representative system as described in section 7 of IEC/EN 61000-4-2, and its cables were isolated from the Ground Reference Plane by an insulating support of 0.1-meter thickness. The GRP consisted of a sheet of aluminum that is at least 0.25mm thick, and 2.5meters square connected to the protective grounding system and extended at least 0.5 meters from the EUT on all sides.

Report No.: S23090407502001

4.4.4 TEST RESULTS

EUT:	HMI to	uch inte	egrated	d scree	n 🔊	Model Name:			H070R01W	
Temperature:	25.5 ℃		.L		5	Relativ	e Humi	dity:	56%	t s
Pressure:	1010hF	Pa				Test Da	ate:		2023-09-11	
Test Mode:	USB P	laying /	TF Pl	aying			L			
Test Power:	AC 230)V/50H	Z		L			7		
Mode		(Contac	t Disch	arge ((Indirec	t)			
Test Level(kV)	Test	Delint		2		4	6	5	Criterion	Result
Test Location	lest	Test Point		-	+	-	+	-		
4	Fro	ont	P	Р	Р	Р			. (
	L Re	ear 🔨	Р	P	Р	Р		1		4
HCP	Le	eft	Р	Р	Р	Р			4.	
	Rię	ght	Р	Р	Р	Р			В	Complian
7	Fre	ont	Р	Р	Р	Р		4		Complies
	Re	Rear		Р	Ρ	Р		L.		<u>6</u> , <u>7</u>
	Le	eft	Р	Ρ	Р	Р	1			
	Rię	Right		Р	Ρ	Р				4 4
Mode	Air Discharge					Contact	Dischar	ge		
Test Level(kV)	2	4	8	15	2	4	6	8	Criterion	Result

Mouc		All Discharge							Contact Discharge						yc .			
Test Level(kV)	2	2	2	1	8	3	1	5	2	2	4	1	6	6	æ	}	Criterion	Result
Test Location	+	-	+	-	+	-	+	-	+	-	+	-	+	-	+	-		
Gap	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ											1.	
Screen	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ							L			S S		
USB port									Ρ	Ρ	Ρ	Ρ			2	•	В	Complies
TF port								12	Ρ	Ρ	Ρ	Ρ				2	- K	、 く
LAN									Ρ	Ρ	Ρ	Ρ					4	

Note:

- (1) +/- denotes the Positive/Negative polarity of the output voltage.
- (2) In the table: 'P' represents 'PASS'; 'F' represents 'FAIL'.
- (3) Criteria A: Normal performance within limits specified by the manufacturer, requestor or purchaser.
- (4) Criteria B: Temporary loss of function or degradation of performance which ceases after the disturbance ceases, and from which the EUT recovers its normal performance, without operator intervention.
- (5) Criteria C: Temporary loss of function or degradation of performance, the correction of which requires operator intervention.
- (6) Criteria D: Loss of function or degradation of performance which is not recoverable, owing to damage to hardware or software, or loss of data.

4.5 RS TESTING

4.5.1 TEST SPECIFICATION

Basic Standard:	IEC/EN 61000-4-3
Required Performance:	A
	80 MHz to 1000 MHz
	1800 MHz
Frequency Range:	2600 MHz
	3500 MHz
	5000 MHz <
Field Strength:	3 V/m
Modulation:	1kHz Sine Wave, 80%, AM Modulation
Frequency Step:	1 % of fundamental
Polarity of Antenna:	Horizontal and Vertical
Test Distance:	3 m 🖉 🖉 🖉 🦿
Antenna Height:	1.5 m 💉 🍝
Dwell Time:	3 seconds

4.5.2 TEST PROCEDURE

The EUT and support equipment, which are placed on a table that is 0.8 meter above ground and the testing was performed in a fully-anechoic chamber.

The testing distance from antenna to the EUT was 3 meters.

The other condition as following manner:

- a. The frequency range is swept from 80 MHz to 1000 MHz, 1800 MHz, 2600 MHz, 3500 MHz, 5000 MHz with the signal 80% amplitude modulated with a 1kHz sine wave. The rate of sweep did not exceed 1.5x 10-3 decade/s. Where the frequency range is swept incrementally, the step size was 1% of fundamental.
- b. Sweep Frequency 900 MHz, with the Duty Cycle: 1/8 and Modulation: Pulse 217 Hz (if applicable)
- c. The dwell time at each frequency shall be not less than the time necessary for the EUT to be able to respond.
- d. The test was performed with the EUT exposed to both vertically and horizontally polarized fields on each of the four sides.

Report No.: S23090407502001

Note:

TABLE-TOP EQUIPMENT

The EUT installed in a representative system as described in section 7 of IEC/EN 61000-4-3 was placed on a non-conductive table 0.8 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.

FLOOR-STANDING EQUIPMENT

The EUT installed in a representative system as described in section 7 of IEC/EN 61000-4-3 was placed on a non-conductive wood support 0.1 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.

Report No.: S23090407502001

4.5.4 TEST RESULTS

EUT:	ΗМΙ	touch integrat	ed screen 🏑	Model Name: H070R01W			<u>l</u>	
Temperature:	25.1	°C		Relative	Humidity:	52%		
Pressure:	101	0hPa 🛛 🔷	*	Test Dat	te:	2023-09-13		
Test Mode:	USE	B Playing / TF I	Playing					
Test Power:	AC 2	AC 230V/50Hz						
Frequency Rar (MHz)	nge	RF Field Position	R.F. Field Stre	enath	Azimuth	Criterion	Result	
80 - 1000 1800 3 V/m (r.i			Front					
		3 V/m (r.	m.s)	Rear				
2600	2600 H/V AM Modu			lated	l eft	A	Complies	
3500	🖉 🛛 < 1000Hz		1000Hz,	80%	Loit	- 2		
5000					Right			

Note:

- (1) Criteria A: There was no change operated with initial operating during the test.
- (2) Criteria B: The EUT function loss during the test, but self-recoverable after the test.
- (3) Criteria C: The system shut down during the test.

4.6 EFT/BURST TESTING

4.6.1 TEST SPECIFICATION

Basic Standard:	IEC/EN 61000-4-4
Required Performance:	В
	Power Line: 0.5 kV, 1 kV
Test voltage:	Signal/Control Line: 0.5 kV
Polarity:	Positive & Negative
Impulse Frequency:	5 kHz
Impulse Wave shape :	5/50 ns
Burst Duration:	15 ms
Burst Period:	300 ms 🔔 🧹 🍝
Test Duration:	2 minutes

4.6.2 TEST PROCEDURE

The EUT and its simulators were placed on a ground reference plane and were insulated from it by a wood support $0.1m \pm 0.01m$ thick. The ground reference plane was $1m^*1m$ metallic sheet with 0.65mm minimum thickness. The other condition as following manner:

- a. The length of power cord between the coupling device and the EUT should not exceed 0.5 meter.
- b. Both positive and negative polarity discharges were applied.
- c. The duration time of each test sequential was 2 minutes.

Report No.: S23090407502001

Note:

TABLE-TOP EQUIPMENT

The configuration consisted of a wooden table (0.8m high) standing on the Ground Reference Plane. The GRP consisted of a sheet of aluminum (at least 0.25mm thick and 2.5m square) connected to the protective grounding system. A minimum distance of 0.5m was provided between the EUT and the walls of the laboratory or any other metallic structure. FLOOR-STANDING EQUIPMENT

The EUT installed in a representative system as described in section 7 of IEC/EN 61000-4-4 and its cables, were isolated from the Ground Reference Plane by an insulating support that is 0.1-meter thick. The GRP consisted of a sheet of aluminum (at least 0.25mm thick and 2.5m square) connected to the protective grounding system.

Report No.: S23090407502001

4.6.4 TEST RESULTS

EUT:	HMI touch integrated screen				Model Name: H070R01			H070R01W			
Temperature:	25.5 ℃	.L	_	1.		Relati	ve Hu	umidi	ty:	56%	+ 5
Pressure:	1010hPa					Test D	ate:			2023-09-11	
Test Mode:	USB Playing /	TF F	Playin	g / Pi	ing				1		
Test Power:	AC 230V/50H	z									
					•					4	
		Test I				_evel (kV)					
Couplin	ng Line	0	.5		1	2	2		4	Criterion	Result
		+	-	+	-	+	-	+	-	-	
	LLX	Р	Р	Р	Р				*		4
	N N	Р	Р	Р	Ρ	4	r	1×		4	
Str. C	PE			5							
		_		_	_						IN S

AC Line	L+N	Ρ	Р	Ρ	Ρ			×		В	Complies
	L+PE					k	4.				
	N+PE				5						* *
	L+N+PE	۷						¥			
DCI	Line								15	1	N/A
Signa	l Line	Ρ	Р	۷.			-			в	Complies

Note:

(1) N/A - denotes test is not applicable in this Test Report.

(2) +/- denotes the Positive/Negative polarity of the output voltage.

(3) In the table: 'P' represents 'PASS'; 'F' represents 'FAIL'.

- (4) Criteria A: There was no change operated with initial operating during the test.
- (5) Criteria B: The EUT function loss during the test, but self-recoverable after the test.
- (6) Criteria C: The system shut down during the test.

4.7 SURGE TESTING

4.7.1 TEST SPECIFICATION

Basic Standard:	IEC/EN 61000-4-5				
Required Performance:	В				
	Combination Wave				
Wave-Shape:	1.2/50 us Open Circuit Voltage				
	8 /20 us Short Circuit Current				
Test Voltage:	Power Line: 0.5 kV, 1 kV, 2 kV				
Surge Input / Output:	L-N, L-PE, N-PE				
Generator Source:	2 ohm between networks				
Impedance:	12 ohm between network and ground				
Polarity:	Positive/Negative				
Phase Angle:	90°/270°				
Pulse Repetition Rate:	1 time / min. (maximum)				
Number of Tests:	5 positive and 5 negative at selected points				

4.7.2 TEST PROCEDURE

a. For EUT power supply:

The surge is to be applied to the EUT power supply terminals via the capacitive coupling network. Decoupling networks are required in order to avoid possible adverse effects on equipment not under test that may be powered by the same lines, and to provide sufficient decoupling impedance to the surge wave. The power cord between the EUT and the coupling/decoupling networks shall be 2meters in length (or shorter).

- b. For test applied to unshielded asymmetrically operated interconnection lines of EUT: The surge is applied to the lines via the capacitive coupling. The coupling /decoupling networks shall not influence the specified functional conditions of the EUT. The interconnection line between the EUT and the coupling/decoupling networks shall be 2 meters in length (or shorter).
- c. For test applied to unshielded symmetrically operated interconnection /telecommunication lines of EUT:

The surge is applied to the lines via gas arrestors coupling. Test levels below the ignition point of the coupling arrestor cannot be specified. The interconnection line between the EUT and the coupling/decoupling networks shall be 2 meters in length (or shorter).

4.7.3 TEST SETUP

Report No.: S23090407502001

4.7.4 TEST RESULTS

EUT:		HMI touch integrated screen				$\hat{\mathcal{A}}$	Model Name:				H070R01W		
Temperatu	ure:	25.5℃					Relative Humidity:			ty:	56%		
Pressure:		1010hPa					Test D	Date:			2023-09-11		
Test Mode	:	USB Playing /	TFF	Playin	g			×-					
Test Powe	er:	AC 230V/50H	Z								4		
					Те	est Le	evel (ł	(V)					
Co	oupling	g Line	0	.5		1	2		4		Criterion	Result	
			+	-	+	-	+	-	+	-			
		0° 🗸		ľ						*		4	
×		90°	Р		Р		1		2		4		
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	L-IN	180°				K					*		
		270°		Р		Р			A		Ster.	<u> </u>	
		0°					d -	č					
AC		90°				1					B	Complies	
Line	L-PC	180°	V						*		A S	complies	
		270°						2		7			
		0°		5	Z								
		90°	2								5		
		180°				ł							
		270°	1		L.		4	×				· ~	
	DC Li	ine										N/A	
s	Signal	Line					*				1	N/A	

Note:

- (1) N/A denotes test is not applicable in this Test Report.
- (2) +/- denotes the Positive/Negative polarity of the output voltage.
- (3) Polarity and Numbers of Impulses:5 Pst / Ngt at each tested mode
- (4) In the table: 'P' represents 'PASS'; 'F' represents 'FAIL'.
- (5) Criteria A: There was no change operated with initial operating during the test.
- (6) Criteria B: The EUT function loss during the test, but self-recoverable after the test.
- (7) Criteria C: The system shut down during the test.

Report No.: S23090407502001

4.8 CONTINUOUS RADIO FREQUENCY DISTURBANCES TESTING

4.8.1 TEST SPECIFICATION

Basic Standard:	IEC/EN 61000-4-6
Required Performance:	A
	0.15 - 10 MHz: 3 Vr.m.s.
Frequency Range & Field Strength:	10 - 30 MHz: 3 to 1 Vr.m.s.
	30 - 80 MHz: 1 Vr.m.s.
Modulation:	1kHz Sine Wave, 80%, AM Modulation
Frequency Step:	1 % of fundamental
Dwell Time:	3 seconds

4.8.2 TEST PROCEDURE

The EUT are placed on an insulating support 0.1m high above a ground reference plane. CDN (coupling and decoupling device) is placed on the ground plane about 0.3m from EUT. Cables between CDN and EUT are as short as possible, and their height above the ground reference plane shall be between 30 and 50mm (where possible). The disturbance signal described below is injected to EUT through CDN.

The other condition as following manner:

- The frequency range is swept from 150 kHz to 80 MHz, with the signal 80% amplitude a. modulated with a 1kHz sine wave. The rate of sweep did not exceed 1.5x 10-3 decade/s. Where the frequency range is swept incrementally, the step size was 1% of fundamental.
- The dwell time at each frequency shall be not less than the time necessary for the b. EUT to be able to respond.

Note:

FLOOR-STANDING EQUIPMENT

The equipment to be tested is placed on an insulating support of 0.1 meters height above a ground reference plane. All relevant cables shall be provided with the appropriate coupling and decoupling devices at a distance between 0.1 meters and 0.3 meters from the projected geometry of the EUT on the ground reference plane.

Report No.: S23090407502001

4.8.4 TEST RESULTS

FUT	HMI to	uch integrated screen	Model Name:	H070R01W	H070R01W		
Temperature:	25.5℃		Relative Humidity:	56%	6%		
Pressure:	1010h	Pa	Test Date:	2023-09-11			
Test Mode:	USB F	Plaving / TF Plaving / Ping	12020 00 11				
Test Power:	AC 23	0V/50Hz			×		
Test Ports (M	ode)	Freq. Range (MHz)	Field Strength	Result	Result		
Input AC. Power Port		0.15 10	3V(r.m.s) AM Modulated 1kHz, 80%	4	at .		
		10 30	3 to 1V(r.m.s) AM Modulated 1kHz, 80%	Ă	Complies		
		30 80	1V(r.m.s) AM Modulated 1kHz, 80%	ATH .			
of the		0.15 10	3V(r.m.s) AM Modulated 1kHz, 80%		x 4		
Input DC. Power F	Port	10 30	3 to 1V(r.m.s) AM Modulated 1kHz, 80%	A	N/A 🞺		
t,	A AN	30 80	1V(r.m.s) AM Modulated 1kHz, 80%	* 4			
4		0.15 10	3V(r.m.s) AM Modulated 1kHz, 80%	or st			
Signal Line	e	10 30	3 to 1V(r.m.s) AM Modulated 1kHz, 80%	A	Complies		
	30 80		1V(r.m.s) AM Modulated 1kHz, 80%				

Note:

- (1) N/A denotes test is not applicable in this Test Report.
- (2) Criteria A: There was no change operated with initial operating during the test.
- (3) Criteria B: The EUT function loss during the test, but self-recoverable after the test.
- (4) Criteria C: The system shut down during the test.

Report No.: S23090407502001

4.9 POWER FREQUENCY MAGNETIC FIELD TESTING

4.9.1 TEST SPECIFICATION

Basic Standard:	IEC/EN 61000-4-8		~
Required Performance:	A	4	
Frequency Range:	50Hz		4
Field Strength:	1 A/m	۸L-	
Observation Time:	5 minutes		7
Inductance Coil:	Rectangular type, 1mx1m	4	

4.9.2 TEST PROCEDURE

The EUT and support equipment, are placed on a table that is 0.8 meter above a metal ground plane measured 1m*1m min. and 0.65mm thick min.

The other condition as following manner:

- a. The equipment cabinets shall be connected to the safety earth directly on the GRP via the
- earth terminal of the EUT.
- b. The cables supplied or recommended by the equipment manufacturer shall be used. 1 meter of all cables used shall be exposed to the magnetic field.

4.9.3 TEST SETUP

Note:

TABLE-TOP EQUIPMENT

The equipment shall be subjected to the test magnetic field by using the induction coil of standard dimension (1 m x 1 m). The induction coil shall then be rotated by 90 degrees in order to expose the EUT to the test field with different orientations.

FLOOR-STANDING EQUIPMENT

The equipment shall be subjected to the test magnetic field by using induction coils of suitable dimensions. The test shall be repeated by moving and shifting the induction coils, in order to test the whole volume of the EUT for each orthogonal direction. The test shall be repeated with the coil shifted to different positions along the side of the EUT, in steps corresponding to 50 % of the shortest side of the coil. The induction coil shall then be rotated by 90 degrees in order to expose the EUT to the test field with different orientations.

Report No.: S23090407502001

4.9.4 TEST RESULTS

EUT:	HMI touch integrated	ted screen 🔬	Model Name: H070R0			<u>l</u>		
Temperature:	25.5 ℃		Rela	ative Humidity:	56%			
Pressure:	1010hPa		Test	Date:	2023-09-11			
Test Mode:	USB Playing / TF Playing							
Test Power:	AC 230V/50Hz							
Test Mode	Test Level	Antenna aspect		Duration(s)	Result	Result		
Enclosure	1 A/m	Х	300 s		A	Complies		
Enclosure	1 A/m	Y	4	300 s	Α	Complies		
Enclosure	1 A/m	ζ		300 s	A	Complies		

Note:

- (1) Criteria A: There was no change operated with initial operating during the test.
- (2) Criteria B: The EUT function loss during the test, but self-recoverable after the test.
- (3) Criteria C: The system shut down during the test.

Report No.: S23090407502001

4.10 VOLTAGE INTERRUPTION/DIPS TESTING

4.10.1 TEST SPECIFICATION

Basic Standard:	IEC/EN 61000-4-11
	B (For 100% Voltage Dips)
Required Performance:	C (For 30% Voltage Dips)
	C (For 100% Voltage Interruptions)
Test Duration Time:	Minimum three test events in sequence
Interval between Event:	Minimum ten seconds
Phase Angle:	0°/45°/90°/135°/180°/225°/270°/315°/360°
Test Cycle:	3 times

4.10.2 TEST PROCEDURE

The EUT shall be tested for each selected combination of test levels and duration with a sequence of three dips/interruptions with intervals of 10 s minimum (between each test event). Each representative mode of operation shall be tested. Abrupt changes in supply voltage shall occur at zero crossings of the voltage waveform.

4.10.3 TEST SETUP

Report No.: S23090407502001

4.10.4 TEST RESULTS

EUT:	HMI touch integrated screen	Model Name:	H070R01W	L.			
Temperature:	25.5℃	Relative Humidity:	56%	* \$.			
Pressure:	1010hPa	Test Date:	2023-09-11				
Test Mode:	ode: USB Playing / TF Playing						
Test Power:	AC 230V/50Hz						
			4				
	Interruption & Dips	Duration(T)	Result	Result			
*	Voltage dips 100%	0.5	В	Complies			
5	Voltage dips 30%	25	С	Complies			
Volt	age Interruption 100%	250	С	Complies			

Note:

- (1) Criteria A: There was no change operated with initial operating during the test.
- (2) Criteria B: The EUT function loss during the test, but self-recoverable after the test.
- (3) Criteria C: The system shut down during the test.

